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I n  this paper we study the development of large-scale wavelike eddies in a two- 
dimensional turbulent jet, extending earlier work on the mixing region (Liu 
1974). The basic mean flow develops from one of mixing-region type with an 
initially specified boundary-layer thickness into a fully developed jet. This study 
brings out the role of the varicose and sinuous modes as they develop in a growing 
mean flow. I n  general, it is found that, for a given frequency parameter, the 
varicose mode has a shorter streamwise lifetime than the sinuous mode. For 
lower frequencies, the latter persists past the end of the potential core only to be- 
come subject to dissipation by the enhanced fine-scale turbulent activity in that 
region. 

1. Introduction 
The basic ideas concerning the elucidation of the development of wavelike 

eddies in a growing mean turbulent flow were presented previously in Liu 
(1974), to which we refer readers for an introduction to  the formulation of the 
physical problem. In  that paper applications were given for the plane mixing 
layer with discussion of the near-field properties in relation to observations and 
control of the development of such eddies. The wavelike eddies ultimately decay 
and give up their energy to the fine-scale turbulence. I n  a real jet flow, turbulent 
diffusion in the fully merged jet region is much more efficient than that in the 
mixing-layer region. Thus, one of the natural questions raised concerns the role 
played by this relatively enhanced turbulent diffusion in the development of such 
eddies. Consideration of their evolution, starting from the mixing layer, should 
also bring out the relative importance of the varicose and sinuous modes in the 
near jet noise field. We turn our attention to such geometric applications in this 
paper, with the aim of gaining insight into the streamwise lifetime or cut-off of 
the large-scale coherent eddies in a real jet flow. Understanding the mechanisms 
leading to the cut-off of the noise sources in the jet is of importance concerning 
the far aerodynamic noise field (Lighthill 1952, 1962; Mollo-Christensen 1960, 
1967). In  this paper we address ourselves only to the large-scale wavelike eddies, 
now thought to be the dominant source of jet noise (Bishop, Ffowcs TVilliams 
& Smith 1971; Liu 1971, 1974). 

7 Present address : Department of Meteorology, Massachusetts Institute of Technology 
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2. Formulation 
The formulation given in Liu (1974) uncouples the wave development from the 

turbulent mean motion, the argument being that the initial amplitude of the 
wave responsible for the subsequent development is sufficiently small to make 
possible the independent calculation of wave development a t  various frequencies. 
The real initial amplitudes a t  the nozzle lip under ‘natural’ conditions could 
include contributions from a wide variety of mechanisms such as oscillations of 
the flow a t  the jet exit, vibrations of the nozzle wall or noise from the internal 
flow. the lower bound being the forcing by the turbulent boundary layer on the 
nozzle wall prior to mixing. I n  Liu (1974) the latter is used as a basis for estima- 
tion of the initial amplitudes, which are broad banded in the ‘low’ frequency 
spectrum of interest (Kistler & Chen 1963). The calculated subsequent stream- 
wise development of wavelike eddies generates a near field that bears a striking 
resemblance to observations, both qualitatively and quantitatively. I n  order 
to check the influence of the development of wavelike eddies on the mean flow 
within the same framework, we formulated the fully coupled problem, which 
includes the effect of the wave or eddy Reynolds stresses on the mean flow 
development. For the same initial values of the wave energy, the mean motion 
was found indeed to  be negligibly affected. However, we are careful to point out 
that this statement is only intended to  apply to a formulation which treats the 
wave-induced turbulent Reynolds stresses via an eddy-viscosity model. 

It therefore suffices only to  mention that we formulated the coupled mean 
flow-wave interaction model and that its computational results are essentially 
the same as those of the corresponding uncoupled one in the ranges of initial 
wave amplitudes of practical interest. Because it is significantly more cumber- 
some to present the coupled formulation, all our subsequent presentation 
will be in terms of the simplified version. The main purpose of this paper is 
to follow the wave development from the mixing region into the merged jet 
flow and thus t o  elucidate the effect of the eizhanced small-scale turbulent 
‘dissipation’ on the kinetic energy of large-scale eddies in the merged region. 
This then provides insight into the streamwise lifetime or cut-off of the large- 
scale wavelike eddies in a real jet flow. Since we wish to provide some under- 
standing of the above problem as well as the role played by the sinuous and 
varicose modes of wave development, we consider the simpler case of a two- 
dimensional mean flow in which two-dimensional wave motions develop (Liu 
1974;  Brown & Roshko 1971, 1972) .  

T h e  mean $ow 

The configuration of the two-dimensional fully expanded jet is illustrated in 
figure 1, where y = yd is the dividing streamline separating fluid particles that  
originate from within the nozzle from those that originate in the ambient field, 
u* is the streamwise component of the velocity along the dividing streamline, 6 
is the shear-layer width, 6, and 6, measure the parts of the shear-layer thickness 
above and below the dividing streamline, respectively, 6, is the shear-layer 
width a t  the exit of the jet and R is the half-width of the jet exit. The subscripts 
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FIGURE 1. Two-dimensional jet flow: schematic. 

j and a denote values at  the exit of the jet and in the ambient field, respectively, 
and p, T and U are the density, temperature and velocity. The subscript de- 
notes a value along the centre-line of the jet. 

We consider the development of instability waves in a mean flow whose 
dominant interaction is with the fine-scale turbulence. We invoke Morkovin's 
(1 964) hypothesis that the turbulence structure is unaffected by compressibility 
and neglect terms which involve turbulent fluctuations in pressure and density. 
We apply Prandtl's boundary-layer assumptions to the time-averaged equations 
of motion and assume that the turbulent Prandtl number is unity. We also 
neglect the unimportant molecular effects. The integrated continuity and 
momentum equations together with the mechanical energy relation €or the mean 
flow and the thermal energy relation take the following forms for our two- 
dimensional cold jet : 

CP 
-= l+$(y- l )Nj2  
? 

where U is the mean streamwise velocity, is the Howarth-Doronitsyn GO- 

ordinate, which is related to the normal co-ordinate y through the relation 
djj = (p/pj)  dy = (TIT)  dy, and i. is an x-dependent incompressible eddy viscosity 
related to the compressible eddy viscosity 6 via the relation p2s = p,"." = 2, where 
pT is a reference density. Alber & Lees (1968) showed that in the mixing region pa 
is the proper reference density and that E" = KO V, 8, where 8 is the transformed 
momentum thickness and KO N 0.06. The above expression for 2 is inadequate 
for the description of the merged region of the jet, where diffusion is faster than in 
the mixing region. Consequently, we choose = 0*037Uqg4 as the proper eddy 
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viscosity for the merged region with pi as the reference density; g& denotes the 
locatsion a t  which the velocity is half its centre-line value. (For many possible 
expressions for the eddy viscosity see Eggers (1966), for example.) It should be 
pointed out that the eddy viscosity is identically zero outside the shear region. 

Next, we normalize the system of equations by referring the physical quantities 
to their free-stream values ak the exit of the jet. Consequently, the velocity, 
density and temperature are scaled on U,, pj and q, respectively. The transformed 
half-width Rof the jet exit is chosen as the reference length scale. I n  the following 
analysis we shall deal only with non-dimensional quantities though retaining the 
same symbols, unless otherwise stated. 

Following ideas of Kubota & Dewey (1964) and Alber & Lees (1968) we assign 
different shape functions to the velocity field above and below the dividing 
streamline: 

( 2 . 5 )  I .=[ u, - (Vq - u*) [ 1 - (Yd - Y)/81]2, yd - 81 6 g 6 yd, 
u,, 0 < Tj 6 gd-81, 

u*[l- (j7 - &)/3212, ya < Y 6 ga + 8 2 ,  

0, &+82 6 8, 
- U,-& U* - 

6, s - - s. 8, = ___ 
- u, u, 

The last two relations are obtained by matching the shear across the dividing 
streamline. I n  the core region UQ = 1 and in the developed region T j d  = 8,. The 
three unknowns (u*, Yd and 8 in the core region and U,, u* and gin the deveIoped 
region) are determined with the aid of (2.1)-(2.3) subject to the initial conditions 
that tc* = 0, T j d  = 1 and 8 = 8, a t  x = 0. 

The mean flow, which is to be used in the local eigenvalue problem subse- 
quent,ly, is best described in terms of the development of u*, the velocity along 
the dividing streamline, as a function of the distance downstream. Its behaviour 
is initially of mixing-region type but it reaches the similar-solution value of about 
0.58 prior to merging (Liu 1974). After the end of the potential core, u* decays 
and i3k N z-4. The length of the potential core region is found to be x, N 25 
while that of the sonic region is x, T 48 for the it! = 2.22 jet with an estimated 
value of 6, of 0.10 (note that R z R).  Although no strict comparisons could be 
made with the round jet, it  is mentioned that Eggers (1966) found x, T 22 and 
xs N 50 for the 1Wj = 2.22 round jet. 

- 

The wave kinetic energy equation and the eigenvalue problem 

Liu (1971, 1974) derived the equation determining the evolution of the wave. 
In  our notation it takes the following form: 
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where prinies denote components of the large-scale disturbance. Equation (2.6) 
states that the evolution of the mean kinetic energy of the wave convected by the 
mean flow is determined by three energy exchange mechanisms: (a )  transfer of 
energy from the mean flow to the wave, commonly termed as 'production', the 
first term on the right-hand side; (b)  work done by the instability pressure 
gradients, the second term on the right-hand side; (c) energy exchange between 
the wave and the fine-scale turbulence, which we call 'turbulent dissipation', 
the last term on the right-hand side. The first two integrals can take eifher sign 
depending on the dynamics of the process. (In our case they are positive.) The 
last integral is always positive since it permits transfer of energy in one direction 
only: from the wave to the fine-scale turbulence. This result follows the pheno- 
menological assumption that the wave-induced turbulent Reynolds stresses can 
be related to the wave rates of strain via a postulated eddy viscosity (Liu 1974). 

I n  order to obtain an amplitude equation for each frequency component of the 
large-scale structure from (2.6), following earlier work (KO, Kubota & Lees 1970; 
Liu & Lees 1970; Liu 1974) we assert that the form of any fluctuating component 
q' of the large-scale structure is given by the eigenfunction Qexp ( - ipt) of the 
local linear theory suitably modified by an amplitude function A :  

q'(x, 7) = A(x)  Q(7; x) exp ( - ipt) + c.c., (2 .7)  

where Q is the shape function, 7 = i j /8 is the local normal co-ordinate, p is a 
local dimensionless frequency related t o  the real physical frequency p* via the 
relations p = po8/80 and Po = /3*(S,R)/q and t is the physical time made dimen- 
sionless by (8R)/Uj. 

The shupe function Q .  For the shape function Q, linear theory gives us the fol- 
lowing eigenvalue equation: 

n"-2u'(u-c)-l7T'-a22i[Ifi-nl~(u-c)2]n = 0, (2.8) 

which has to be supplemented by homogeneous boundary conditions, to be pre- 
scribed later. n is the shape function of the pressure distribution, primes denote 
differentiation with respect to 7, c = c, +ic, is the complex phase velocity of the 
wave and a = a,+ia, is the complex wavenumber. Equation (2.8) is written in 
a dimensionless form in which 8, V,, pi and T, serve as scales. Locally we have 
/3 = occ. Once the eigenvalue problem has been solved for 7 ~ ,  the shape functions 
of the other components of the disturbance may be obtained from the local 
linear theory. The varicose and sinuous modes are described by the following 
boundary conditions imposed on the axis (see Lees & Gold 1964) : 

n'(0) = 0 (varicose mode), 

n(0) = 0 (sinuousmode). 

( 2 . 9 ~ )  

(2.9b) 

I n  the ambient field far away from the jet the radiation condition dictates the 
other bou.ndary condition for the pressure perturbation. We obtain 

(2.10) 
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where Ma is the Mach number based on the jet exit velocity and the ambient 
speed of sound. Note that ai < 0 for spatially amplifying waves. The behaviour 
of a neutral wave (ai = 0, ci = 0) in the ambient field depends on whether 
or not the wave is supersonic with respect to the ambient speed of sound. When 
the wave is supersonic (Macr > 1) we obtain a laterally non-decaying harmonic 
solution similar to the Mach waves generated by a supersonic flow over a wavy 
wall. When the wave is subsonic (Macr < 1) the solution decays exponentially. 
When c is complex the wave always decays exponentially because c, introduces 
an imaginary part into ( I  -Mi@)&.  However, we shall see that a supersonic 
amplifying wave does not induce the same near field as a subsonic amplifying 
wave. It should be pointed out that a wave which is locally supersonic in the jet 
region may be subsonic with respect to the ambient field. The semicircle theorem 
(Drazin & Howard 1966) limits the range of c; consequently no supersonic waves 
can exist beyond the mean flow sonic point U& M i  = 1. So far our remarks have 
been concerned about the shape function Q in (2.8). 

The amplitude function A. The amplification and decay of the large-scale 
structure in a developing mean flow comes primarily from the amplitude function 
A(z),  and this is determined from the energy balancing mechanisms of (2.6) after 
substitution of (2.7) rather than from the amplification rates of the local linear 
theory. The linear eigenfunctions Q and the associated amplification rates play a 
subsidiary role in that they occur in integrals associated with the physical mech- 
anisms of energy production, pressure work and turbulent ‘dissipation’ in (2.6). 
Such integrals appear as x-dependent coefficients in the equation for A(x). These 
are discussed in more detail in Liu (1974). 

With regard to the integrands of these interaction integrads, the symmetry of 
the mean flow about the centre-line of the jet bears directly on such eigensohitions 
of (2.8). Two fundamental modes of disturbance exist: varicose and sinuous. 
(The symmetry inherent in our analysis is not present in Liu’s mixing-layer 
analysis.) Some information about the relative importance of these two modes 
exists in the literature for a non-developing parallel mean flow. Lessen, Fox RS 
Zien (1965) considered a compressible top-hat plane jet profile with a time-like 
amplifying disturbance. According to their calculations the sinuous mode is more 
unstable than the varicose mode. Mattingly & Criminale (1971) considered an 
incompressible fully developed plane jet with a spatially amplifying disturbance. 
Again, their analysis predicts a dominating sinuous disturbance. However, the 
two idealized cases mentioned do not apply to a real developing jet. In  this paper 
we investigate the development of the two fundamental modes of the disturbance, 
taking into account the spread of the initial mixing regions and their merging 
downstream. That is, the two modes for Q which occur under the interaction 
integrals are used to study the streamwise development of A(z) ,  subject to the 
‘spectrum’ of initial conditions A,. 

The near j e t  noise Jield 

It has been shown (Liu 1974) that, because the Q shape functions of ( 2 . 7 )  decay 
laterally (radially in the case of a round jet ) in a weakly exponential manner, the 
instability wave influences the ‘near field’ well beyond the confines of the jet, 
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and this is supported by near-field observations (see, for instance, Lassiter & 
Hubbard 1956; Howes et al. 1957). Such striking agreement is obtained through 
performing direct calculation of near-field properties from large-scale quantities 
in the form of (2 .7 ) ,  rather than performing a retarded potential calculation. The 
present work is intended to consider contributions to such ‘ near-field ’ properties 
from the sinuous and varicose modes. In  so doing, we obtain some understanding 
of the behaviour of such aerodynamic sound sources. The far sound field, which 
is not considered here, must then be obtained through a retarded potential 
calculat~ion (Lighthill 1952, 1962) that includes the source contributions. 

The direct calculation of the near-field properties in terms of an averaged 
energy flux or the square of the pressure fluctuations would contain, from the 
form of ( 2 . 7 ) ,  the square (A(x ) I2  of the amplitude function and products of the 
shape function Q2 which describes the local lateral behaviour according to the 
local characteristics of the wave. Any properly defined shape function should 
give us the desired qualitative lateral behaviour but for definiteness we use the 
pressure-velocity correlation vector. Consequently, we define a local intensity 
vector (which should not be confused with that obtained by a retarded potential 
consideration) as - -  

I = p’u’i + p’v’j , (2.11) 

where i and j are unit vectors in the x and y directions, respectively. Upon ex- 
pressing the components of I in terms of the shape functions we find that in the 
ambient field 

- 

} (2.12) 
v‘p’ - 2 I A 12 exp { - 2yg[c~(  1 - $1; c’) 81) !&g[ia( 1 - H; c2)* ] /P ,  

up’ N 2 I A I 2 exp { - ~ZJB[CZ( I - H: c~)$I) T~Lz(c-~), 

where lA12 is the square of the amplitude of the wave determined by (2.6). 
Within the framework of our analysis the eigenvalue problem gives us an 

approximate description of the various wave shape functions. However, the 
extent in the streamwise direction of significant wave activity is determined 
primarily by IA 1 2 ,  whose evolution is governed by (2.6). I n  other words, the ener- 
getics of the flowin the jet determine the natural streamwise cut-off of the wave. 

3. Results and discussion 
I n  our numerical example we used Eggers’ data (1966) for his Mj = 2.22 jet 

and estimated the initial boundary-layer thickness as one-tenth of the exit 
radius. The lengths of the potential core and the sonic core obtained in the 
calculations are in good agreement with experimental evidence (Merkine 1974). 
In  order to integrate (2.6) the initial amplitude of the wave together with its 
physical frequency must be specified, and we chose a broad frequency band with 
\ A \ ;  = 1W5 as the initial value of the square of the wave amplitude as already 
discussed. This choiceis of the right order of magnitude for the ‘naturally ’existing 
disturbances in the flow field (Liu 1974). Our frequency range corresponds to 
a rangc of the frequency parameter Po of 0.01-0.1, which in turn corresponds to 
a dimensional frequency range of 0.1-10 kHz. The noise frequency spectrum 
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obtainedby Jones (1971) for a jet similar to Eggers’ indicates that our range of 
frequencies covers most of the spectrum. The solution of (2.6) has justified the 
decoupling of this equation from the rest of the mean flow equations. 

The development of the amplitude of the wave and consequently the wave- 
induced noise sources depends on the role played by the various energy exchange 
mechanisms appearing in (2.6). I n  all the calculations performed it was found that, 
in the early stages of the wa,ve development, ‘production’ dominates pressure 
work and ‘turbulent dissipation’ and the amplitude of the wave increases rapidly. 
At more advanced stages pressure work and ‘turbulent dissipation’ become 
comparable to the ‘production ’ term and eventually override it. This behaviour 
causes the amplitude of the wave to attain a peak and eventually to  decay. It 
has also been found that, the lower the frequency, the further downstream the 
peak is located. Observations in the near field (Lassiter & Hubbard 1956; Howe 
et al. 1957) indicate that high frequency contributions to the pressure fluctuations 
or intensity dominate in the region near the jet exit, whereas low frequency 
contributions dominate in the region far downstream. This is in accordance with 
our purely local considerations. I n  these earlier near-field observations, the con- 
tributions from the sinuous or varicose modes are not differentiated. Our results 
for these two modes therefore provide such an understanding. Our discussions 
thus far, then, suggest methods for noise source suppression according to which 
jet noise control can be achieved by controlling the mcchanisms governing the 
development of the amplitude of large-scale waves. Liu (1974) gives a rather 
extensive treatment of the subject. Our results €or the development of the wave 
amplitude and the various energy exchange mechanisms are entire1-i- similar t o  
his, and therefore will not be represented in detail here. Instead, we shall 
elucidate the roles played by the sinuous and varicose modes. 

Figures 2 (a )  and (b )  depict the behaviour of the real part of the complex phase 
velocity of the wave for the sinuous and varicose modes of the disturbance, 
respectively. For clarity, in this and in subsequent figures, cR, x, y and zi are 
dimensional. For the sinuous mode the wave starts off with a subsonic velocity. 
If the frequency of the wave is high enough it accelerates and saturates about a 
supersonic speed which is higher for higher frequencies. The behaviour is different 
for low frequencies. When Po = 0.01 the wave reaches the developed region with 
subsonic speed, then following an adjustment region, its phase velocity begins to 
decay as it is limited by the decrease in U,. It will be shown later that supersonic 
waves influence the near field more profoundly than subsonic waves. The varicose 
mode (figure 2b) shows different behaviour from the sinuous mode. We find that 
low frequencies are associated with high phase velocities. For Po = 0-01 the wave 
starts off with a supersonic phase velocity. For Po = 0.075 the behaviour is similar 
to  the sinuous case except that the saturated value is attained sooner. 

Our results indicate that we are dealing with large-scale instabilit,y waves, 
since the wavelengths are of the same order of magnitude as the jet diameter. 
We have also found that the local linear theory predicts that the sinuous waves 
have larger local amplification rates -a,R than the varicose waves, as has 
already been suggested by earlier work. For later reference, we show the linear 
local amplification rates for the two modes in figure 3. As we have already dis- 
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FIGURE 2.  Streamwise development of the phase velocity a t  M,  = 2.22. 
(a) Sinuous mode. ( b )  Varicose mode. CR and x are dimensional. 

cussed, the eigenfunctions of the linear theory as well as - cti provide the vertical 
structure while the amplitude function gives streamwise structure according to 
(2.6). 

Figures 4 and 6 depict levels of constant normal intensity (q= constant) 
expressed in decibels. In  these units the wave-induced normal intensity flux is 
given by ~- 
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FIGURE 3. Streamwise development of the local linear amplification rates-atl< at 
AT3 = 2.22. ( a )  Sinuous mode. ( b )  Varicose mode. a, arid x are dimensional. 

Acoustic measurements are made by determining the pressure field. Our 
results are represented in terms of the wave-induced normal intensity v’p’, but 
the local linear theory provides us with a proper conversion relation through 
the form given by (2.7).  We find that in the ambient field 

and we refer, of course, to  local contributions only. Figure 4 represents the wave- 
induced normal intensity for a range of frequencies for the sinuous mode of the 
disturbance. It is clear that high frequency waves peak earlier than low frequency 
waves. This result is also supported by Liu’s work and is a dominat’iiig feature of 
the experimental observations. An important feature is that for a fixed y station 
t,he dominant intensity shifts downstream with the highest intensity occurring 
a t  the end of the potential core. I n  the subsequent fully developed region, where 
the fine-scale turbulence is more active than in the mixing region, the amplitude 
of the wave decays rapidly as a result of the enhanced ‘dissipation ’ of its kinetic 
energy. This is reflected in figure 4 in the rapid decay of the normal intensity for 
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FIGURES 4(a-c). For legend see next page. 
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FIGURE 4. Contours of the wave normal intensity level I N  (relative to 10-l2 W/m2) for 
M ,  = 2.22 for the sinuous mode at  various values of the frequency parameters. (a )  Po = 0.1. 
(b)  /I,, = 0.075. (c) Po = 0.05. ( d )  Po = 0.01. x and y are dimensional. 
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FIGURE 5. Streamwise development of the amplitude function for ~ 3 1 ~  = 2.22, 
IA,,[Z = Po = 0.05, sinuous mode. x is dimensional. 
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all frequencies and it appears t o  explain the appearance of the observed maxi- 
mum acoustic intensity in the vicinity of the end of the potential core (see, for 
example, Potter & Jones 1968; Bishop et al. 1971). 

We should point out that onby the non-parallel formulation for I A (x) I which 
includes the proper energy exchange mechanisms accounts for the decay in the 
amplitude of the wave. The local linear theory cannot account for this decay since 
it indicates the existence of a nearly neutral wave far downstream (see figure 3). 
The linear theory, of course, provides local lateral shape functions in our consider- 
ation of the developing mean flow (Liu 1974). As an illustration, the development 
of IA13/1A012 for the Po = 0.05 sinuous mode is shown in figure 5 ;  it makes a 
maximum contribution of about 15 db. The streamwise development of I N  (figure 
4c) essentially follows that of lOlog,,IA 12/1A012. 

The fast decay of the flow field downstream of the potential core restricts the 
phase velocity of the large-scale eddies which enter the developed region, since 
the phase velocity can never exceed the local maximum flow velocity and there- 
fore no supersonic phase velocities can exist downstream of the sonic point. Our 
results indicate that supersonic wavelike eddies attenuate rapidly in the fully 
developed region. This result is supported by Salant, Gregory & Kolesar (1971), 
who did not observe ambient waves downstream of the tip of the potential core. 
The Po = 0.01 wave, though subsonic throughout its development, depicts the 
narrow lateral extent of the region of sources generated by the subsonic wavelike 
eddies that can exist downstream of the sonic point. The observations which 
indicate that the intensity decays rapidly downstream of the sonic point result 
from the fact that only subsonic waves can exist in this region. Since the lateral 
extent of the intensity of supersonic eddies is greater than that of subsonic 
eddies it might be conjectured that supersonic eddies exert a greater influence 
over the far field than subsonic eddies and that the main noise-producing eddies 
occur before the termination of the potential core region. 

In  figure 6 we show the lines of constant normal intensity of the wavelike eddies 
for the varicose mode compared with some of the reuslts for the sinuous mode for 
the same frequency parameter Po. For the case Po = 0.01, we note from the discus- 
sion of phase velocities, shown in figure 2,  that the varicose mode is supersonic 
a t  the outset while the sinuous mode remains subsonic throughout its streamwise 
development. Also, from the calculated results of the local linear theory, the 
general level of -a,R for the varicose mode is much lower. Thus these facts 
account, through (2.12)) for the varicose mode having a much larger influence 
than the sinuous mode for the low frequency case Po = 0.01. For thi- case, 
though dominating laterally, the varicose mode has a much shorter streamwise 
lifetime. For the higher frequency modes, typified by the case Po = 0.075, the 
varicose mode, which also starts out subsonic, becomes supersonic earlier and 
has a generally lower level of - ai R than the corresponding sinuous mode. Thus 
the varicose mode has a greater influence laterally and again has a shorter stream- 
wise lifetime. I n  general, given the same initial ‘natural’ (Liu 1974) excitation 
level of lAlf = the varicose-mode intensity levels are relatively lower close 
to the jet than those for the sinuous mode. Although the fact that the Strouhal 
number based on the nozzle diameter 2R is not necessarily the appropriate 
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FIGURE 6. Contours of the normal intensity level I N  (relative t o  10-12 W/mZ) for illj = 2.22 
for the varicose mode; sinuous-mode contours are included for comparison. Varicose mode : 

= 0.01 ; - - - -, Po = 0.075. 
TC and y are dimensional. 

/3 - 0.01 ; - -, = 0.075. Sinuous mode: - - -, 
-3 0 -  

indicator of the ‘peak emitter’ was discussed in Liu (1974), we note here its 
correspondence with the appropriate frequency parameter Po : 

X t ,  = PO(2RPO) (4l/zoo) 

For Po = 0.01 and 0.075, St, is 0.05 and 0.36, respectively, for a ratio of the initial 
boundary-layer thickness to the nozzle radius of 0-1 and forMi = 2.22,6,/8 E 1-49 
according to the Howarth transform inversion. 

For a low speed plane jet Oseberg & Kline (1971) observed that in the near 
field a predominant varicose mode existed in the region before the end of the 
potential core, while the sinuous mode existed further downstream. This is thus 
in agreement with our discussions. 
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4. Concluding remarks 
It has been the aim of this paper to elucidate the question of the streamwise 

lifetime of the varicose and sinuous modes of the wavelike eddies in a developing 
real jet flow. The round-jet problem within the eddy-viscosity framework is now 
a problem of a computational nature, the significant physical features being 
exhibited by the present, much simpler plane problem. The problems of under- 
standing the wave-induced turbulent Reynolds stresses and their role in the 
' dissipatioii ' of the large-scale structure and the contributions t o  the far 
sound field from the large-scale structure are being investigated and will be 
reported a t  a later date. 
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Foundation through Grants NSF GK-10008 and ENG73-04104 and by the 
National Aeronautics and Space Administration, Langley Research Center, 
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